Journal of Organometallic Chemistry, 384 (1990) C38–C42 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20639PC

Preliminary communication

$Ru_3(CO)_9B_2H_6$: A metal-rich ruthenaborane analogue of pentaborane(9) and a model for a triruthenium supported unsaturated hydrocarbon

Ann K. Chipperfield, Catherine E. Housecroft * and Dorn M. Matthews

University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW (U.K.)

(Received December 7th, 1989)

Abstract

The preparation by two independent routes, the isolation, and the characterisation of the metal-rich ruthenaborane $Ru_3(CO)_9B_2H_6$ are reported. The cluster is formally derived from pentaborane(9) by the replacement of three {BH} by {Ru(CO)₃} units, and it is also an isoelectronic analogue of $Ru_3(CO)_9C_2H_4$. Deprotonation occurs by loss of an Ru-H-Ru proton. The anion [Ru₃(CO)₉B₂H₅]⁻ is static on the NMR timescale, thereby behaving in a similar manner to the related anion [Fe₂(CO)₆B₃H₇]⁻ whilst contrasting with the isolobal [B₅H₈]⁻ anion which is fluxional.

We recently described the characterization of several metal-rich ruthenaborane clusters [1-3]. The use of Ru₃(CO)₁₂ as a precursor of these compounds gives a degree of specificity to the synthesis, since the relative strength of the Ru-Ru bond mitigates against Ru-Ru bond cleavage; hence Ru₃ ring opening or fragmentation is minimized. One aim of our investigations is to use the Ru₃ framework as a surface upon which to carry out borane transformations, e.g. the systematic coupling or cleavage of small borane units. Homologation of BH₃ · thf takes place at mononuclear transition metal centres [4-9], and recently Messerle has illustrated that the reaction of $[BH_4]^-$ with $\{(Me_5C_5)Ta\}_2(\mu-X)_4, (X = Cl, Br)$ provides a model for the conversion of CH₄ into C₂H₆ [10]. We describe below two routes to a new ruthenaborane, Ru₃(CO)₉B₂H₆, both starting from Ru₃(CO)₁₂, but differing in that one involves the homologation of BH₃ · thf while the second involves transformation of the [B₃H₈]⁻ ion to a trimetal supported diborane unit.

The reaction of $\operatorname{Ru}_3(\operatorname{CO})_{12}$ with $\operatorname{BH}_3 \cdot \operatorname{thf}$ and $\operatorname{Li}[\operatorname{BHEt}_3]$ gives a mixture of cluster anions, which, after acidification and chromatographic separation, yields $\operatorname{Ru}_3(\operatorname{CO})_9\operatorname{BH}_5$ ($\approx 10\%$ yield) [1] and $\operatorname{Ru}_4(\operatorname{CO})_{12}\operatorname{BH}_3$ ($\approx 10\%$ yield) [3]. A minor product ($\leq 5\%$ yield) of the reaction has now been isolated and spectroscopically

characterized as $\operatorname{Ru}_3(\operatorname{CO})_9 \operatorname{B}_2 \operatorname{H}_6$ (I) [11*]. A higher yield, ($\geq 10\%$), of I is obtained from the reaction of $[\operatorname{Me}_4 \operatorname{N}][\operatorname{B}_3 \operatorname{H}_8]$ with $\operatorname{Ru}_3(\operatorname{CO})_{12-x}(\operatorname{MeCN})_x$ (x = 1,2) [12] in acetonitrile. Our infrared data in the carbonyl region for I agree with those given some twelve years ago by Lewis and Johnson [13] when, on the basis of mass and infrared spectral data, they proposed the formation of I as a very minor product from the reaction of $\operatorname{Ru}_3(\operatorname{CO})_{12}$ and $[\operatorname{BH}_4]^-$. No structural assignment was made, and it has since been pointed out [14] that a molecular mass consistent with $\operatorname{Ru}_3(\operatorname{CO})_9 \operatorname{B}_2 \operatorname{H}_6$ would also match that of $\operatorname{H}_3 \operatorname{Ru}_3(\operatorname{CO})_9 \operatorname{BCH}_2$, an analogue of the structurally characterized osmaborane $\operatorname{H}_3 \operatorname{Os}_3(\operatorname{CO})_9 \operatorname{BCH}_2$ [15]. From our complete spectroscopic characterization of I, we are now able to establish the existence of this metal-rich metallaborane, and assign a structure as detailed below.

Cluster I is a *nido*-ruthenaborane, formally derived from pentaborane(9) by the isolobal replacement of 3BH by $3Ru(CO)_3$ units. Three isomers (Fig. 1) are possible but only isomer A is consistent with the combined ¹H and ¹¹B NMR data; *endo*-hydrogen sites are in a ratio of 1(B-H-B)/2(Ru-H-B)/1(Ru-H-Ru) and there is a single boron environment. Isomer A is the expected structure, since it exhibits a closed triangle of ruthenium atoms and should therefore be energetically preferred over B and C in which the Ru₃-framework is an open one.

Compound I is of particular interest because it fills a gap in the series of 5-vertex *nido*-metallaboranes. Taking B_5H_9 as the parent compound, isolobal substitutions may be made using metal fragments to replace BH units [16]. Compounds with an MB₄-core are known for Fe, Ru, Os, Co and Rh [17], while Fe₂(CO)₆B₃H₇ is the only *nido*-derivative having an M₂B₃-core [8,18]. I is the first isolobal analogue of B₅H₉ which possesses an M₃B₂-core, and the first metal-rich derivative, since no example of a *nido*-metallaborane having an M₄B-core is documented. Fe₄(CO)₁₂BH₃ [19] and Ru₄(CO)₁₂BH₃ [3,13,20] are both known but are classed as *arachno* clusters [19]; a *nido*-M₄B cluster of this type should have the formulation M₄(CO)₁₂BH₅, (M = group 8 metal).

^{*} Reference number with asterisk indicates a note in the list of references.

Fig. 1. Schematic representation of the three possible isomers of I and their relationship to *nido*-B₅H₉.

Compound I is isoelectronic with $Ru_3(CO)_9C_2H_4$ and is therefore a borane analogue of a trimetal supported unsaturated hydrocarbon. Note that C_2H_4 , BCH₅, and B_2H_6 comprise a series of isoelectronic main group ligands. $Ru_3(CO)_9C_2H_4$ exists in two isomeric forms (II and III). In each structure, 2Ru-H-Ru interactions are present, and the residual C_2H_2 unit bonds are either parallel or perpendicular to one edge of the Ru_3 -triangle [21–23]. In the perpendicular mode, the organic fragment becomes a vinylidene ligand, confirmed crystallographically for $H_2Os_3(CO)_9(C = CH_2)$ [23,24]. The same perpendicular orientation is observed for the borylidene ligand in $H_3Os_3(CO)_9(B = CH_2)$ [15] (IV) with no reported isomerism to a give a parallel bonded BCH₂-ligand. In I, spectroscopic evidence supports a parallel bonding mode for the diborane ligand. Presumably this reflects the fact that each boron atom makes most efficient use of its bonding electrons if it is an integral part of the metallaborane cluster. A perpendicular bonding mode for a B_2H_2 akin to those illustrated for the CCH₂ or BCH₂ units in III and IV would make unacceptable demands upon the 3 valence electrons of the terminal boron atom. Thus, in going from $Ru_3(CO)_9C_2H_4$ to $Ru_3(CO)_9B_2H_6$, the orientation of the main group fragment is controlled by the bonding capabilities of C vs. B.

Deprotonation of I to $[Ru_3(CO)_9B_2H_5]^-$ (V) occurs via the removal of an Ru-H-Ru bridging proton, deduced on the basis of ¹¹B and ¹H NMR spectroscopic

data [25*]. Apart from the disappearance of the metal hydride signal in the ¹H NMR spectrum, the data for I and V are extremely similar, thereby indicating that the borane fragment undergoes no significant structural perturbation upon deprotonation of I. The Ru-H-B and B-H-B protons in the anion are static at room temperature on the 400 MHz timescale. This situation mimics that observed for *nido*-[Fe₂(CO)₆B₃H₆]⁻ [8], but contrasts with the fluxional behaviour exhibited by *nido*-[B₅H₈]⁻ [26]. We have previously noted that introduction of an M-H-B in place of B-H-B interaction tends to raise the activation barrier for *endo*-hydrogen mobility [8], and the observation of a static structure both for I and V supports this observation. The results of a Fenske-Hall quantum chemical study for neutral I are consistent with the observation that deprotonation occurs preferentially by removal of an Ru-H-Ru bridging hydrogen atom.

Acknowledgement Acknowledgement is made to the Donors of the PRF, administered by the ACS, for support of this research (grant #19155-AC3), to the S.E.R.C. (to D.M.M.) and to the Royal Society for a 1983 University Research Fellowship (to C.E.H.). Johnson-Matthey is thanked for generous loans of RuCl₃.

References

- 1 A.K. Chipperfield and C.E. Housecroft, J. Organomet. Chem., 349 (1998) C17.
- 2 A.K. Chipperfield, C.E. Housecroft and P.R. Raithby, Organometallics, in press.
- 3 A.K. Chipperfield, C.E. Housecroft and A.L. Rheingold, Organometallics, in press.
- 4 P.D. Grebenik, J.B. Leach, M.L.H. Green and N.M. Walker, J. Organomet. Chem, 345 (1988) C13.
- 5 P.D. Grebenik, M.L.H. Green, M.A. Kelland, J.B. Leach, P. Mountford, G. Stringer, N.M. Walker and L.-L. Wong, J. Chem. Soc., Chem. Commun., (1988) 799.
- 6 G. Medford and S.G. Shore, J. Am. Chem. Soc., 100 (1978) 3953.
- 7 G.B. Jacobsen, E.L. Andersen, C.E. Housecroft, F.-E. Hong, M.L. Buhl, G.J. Long and T.P. Fehlner, Inorg. Chem., 26 (1987) 4040.
- 8 C.E. Housecroft, Inorg. Chem., 25 (1986) 3108.
- 9 T.J. Coffy and S.G. Shore, 194th A.C.S. National Meeting, 1987 INORG 158.
- 10 C. Ting and L. Messerle, J. Am. Chem. Soc., 111 (1989) 3449.
- 11 Ru₃(CO)₉B₂H₆: m/eP^+ 584 (isotopic distribution agrees with simulated pattern for B₂C₉H₆O₉Ru₃) with 9CO losses observed; IR (hexane): ν (BH) 2360 vw, 2300 vw, ν (CO) 2108 w, 2082 s, 2067 w, 2061 w, 2055 vs, 2042 m, 2031 m, 2012 w, 1997 w cm⁻¹; 128 MHz ¹¹B NMR (CDCl₃, 298 K): δ + 17.0 (br, FWHM 310 Hz, ¹¹B{¹H} FWHM 170 Hz); 400 MHz ¹H NMR (CDCl₃, 298 K) δ + 4.5 (br. 2H), -1.2 (br. 1H), -12.3 (br. 2H), -19.0 (s, 1H).
- 12 S. Drake, R.J. Khattar, in R.B King, J.J. Eisch, (Eds.), Vol. 4, Organometallic Syntheses, Elsevier, Amsterdam, 1988, p. 234.
- 13 C.R. Eady, B.F.G. Johnson and J. Lewis, J. Chem. Soc., Dalton Trans., (1977) 479.
- 14 T.P. Fehlner, New J. Chem., 12 (1988) 307.
- 15 D.-Y. Jan and S.G. Shore, Organometallics, 6 (1987) 428.
- 16 R.L. DeKock and T.P. Fehlner, Polyhedron, 1 (1982) 521.
- 17 J.D. Kennedy, Prog. Inorg. Chem., 32 (1984) 519 and refs. therein.
- 18 K.J. Haller, E.L. Andersen and T.P. Fehlner, Inorg. Chem., 20 (1981) 309.
- 19 T.P. Fehlner, W.R. Scheidt and K.S. Wong, J. Am. Chem. Soc., 104 (1982) 111; T.P. Fehlner, C.E. Housecroft, W.R. Scheidt and K.S. Wong, Organometallics, 2 (1983) 825.
- 20 F.-E. Hong, T.J. Coffy, D.A. McCarthy, S.G. Shore, Inorg. Chem., 28 (1989) 3284.
- 21 E.A. Seddon and K.R. Seddon, Chemistry of Ruthenium, Elsevier, Amsterdam, 1984, p. 1053.
- 22 E. Sappa, A. Tiripicchio and P. Braunstein, Chem. Rev., 83 (1983) 203.
- 23 J. Lewis and B.F.G. Johnson, Pure Appl. Chem., 44 (1975) 43.
- 24 Ref. 8 in A.J. Deeming and M. Underhill, J. Chem. Soc., Dalton Trans., (1974) 1415; A.J. Deeming and M. Underhill, J. Chem. Soc., Chem. Commun., (1973) 277.

- 25 [Ru₃(CO)₉B₂H₅]⁻: FAB $m/e P^-$ 583 (isotopic distribution agrees with simulated pattern for B₂C₉H₅O₉Ru₃) with 9CO losses observed; IR (CH₂Cl₂): ν (BH) 2338 w, 2304 w, ν (CO) 2057 w, 2005 s, 1978 m, 1952 w cm⁻¹; 128 MHz ¹¹B NMR (CD₂Cl₂, 298 K): δ +18.4 (br. FWHM 300 Hz, ¹¹B{¹H} FWHM 120 Hz); 400 MHz ¹H NMR (CD₂Cl₂, 298 K): δ +4.5 (br. 2H), -0.4 (br. 1H), -12.8 (br, 2H).
- 26 H.D. Johnson, R.A. Geanangel and S.G. Shore, Inorg. Chem., 9 (1970) 908.